Towards multi-scale measurement-informed methane inventories: reconciling bottom-up inventories with top-down measurements using continuous monitoring systems

William Daniels, Jiayang (Lyra) Wang,Arvind Ravikumar,Matthew Harrison, Selina Roman-White, Fiji George,Dorit Hammerling

crossref(2023)

引用 0|浏览0
暂无评分
摘要
Government policies and corporate strategies aimed at reducing methane emissions from the oil and gas sector increasingly rely on measurement-informed emissions inventories, as conventional bottom-up inventories poorly capture temporal variability and the heavy-tailed nature of methane emissions. This work is based on an 11-month methane measurement campaign at oil and gas production sites. We find that basin- and operator-level top-down measurements show lower methane emissions during end-of-project than during baseline 9-months earlier. However, gaps persist between end-of-project top-down measurements and bottom-up inventories, which we reconcile with high-frequency data from continuous monitoring systems (CMS). Specifically, we use CMS to (i) assess the validity of snapshot measurements and determine how they relate to the temporal emissions profile of a given site and (ii) create a near-real time, measurement-informed inventory that can be cross-checked with top-down measurements to update conventional bottom-up inventories. This work presents a real-world demonstration of how CMS can be used to reconcile top-down snapshot measurements with bottom-up inventories at the site-level. More broadly, it demonstrates the importance of multi-scale measurements when creating measurement-informed emissions inventories, which is a critical aspect of recent regulatory requirements in the Inflation Reduction Act, voluntary methane initiatives such as OGMP 2.0, and corporate strategies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要