Construction atomic-level N-P charge transfer channel for boosted CO2 photoreduction

Applied Catalysis B: Environmental(2023)

引用 6|浏览22
暂无评分
摘要
Efficient conversion of CO2 to high value-added chemical products is a promising strategy for achieving carbon neutrality. Although the photocatalyst technique has been made widespread researched, highly efficient photoreduction CO2 with metal-free photocatalysts remains a challenge. Herein, we report a zero-dimensional black phosphorus quantum dots (BPQDs)-decorated one-dimensional carbon nitride nanotubes (CNNT) photocatalyst that reduces CO2 to CO with a rate of 44.6 μmol g–1 h–1, which is better than the similar photocatalysts and pristine carbon nitride nanotubes. Synchrotron radiation XAFS measurements substantiate the construction of N-P electron transfer channels within BPQDs and CNNT. Time-resolved PL spectrum demonstrates the faster separated electron hole pairs. In situ irradiated X-ray photoelectron spectroscopy confirms the photogenerated-electron flow trend and the active site of photocatalytic reaction. Moreover, the main intermediate *COOH is verified by in situ FT-IR characterization which is corresponding to the previous research. The construction of atomic-level N-P charge transfer channel efficiently facilitates the charge transfer and accelerates the catalytic rate. This work provides a novel insight into the design of BPQDs-anchoring heterostructures for photocatalytic CO2 reduction.
更多
查看译文
关键词
co2 photoreduction,atomic-level
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要