Zat12 Gene Ameliorates Temperature Stress in Wheat Transgenics by Modulating the Antioxidant Defense System

Stresses(2023)

引用 0|浏览3
暂无评分
摘要
The present study was undertaken with the objective to reconnoiter the role of Zat12-related biochemical activities in temperature stress tolerance in wheat transgenic lines Z-8-12 1A, Z-8-12 1B, Z-8-19, and Z-15-10, which were produced by transforming wheat-cultivar PBW 621. Zat12 transgenics (ZT) along with non-transgenic (NT) wheat cultivars (PBW 621, PBW, 550, and HD 3086) were assessed at the three-weeks seedling stage under chilling (−2 °C and −4 °C) and heat (30 °C and 32 °C) stress. Specific activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione-S-transferase (GST), glutathione reductase (GR), and antioxidants (proline and ascorbate) were profoundly increased under temperature stress in ZT related to NT. However, under −4 °C and 32 °C, a significantly higher increase was reported. In contrast, H2O2 and MDA were found to be much lower in ZT than in NT. Similarly, lesser decreases in length, fresh weight, and dry weight of seedlings were reported in ZT at 30 °C and 32 °C. RT-PCR studies revealed the enhanced expression of Zat12 in the roots of seedlings at the 5, 10, and 14 days after germination (DAG) stages in ZT under the stress conditions. Upregulation of the antioxidant defense system in ZT and their better tolerance depict an alternative for wheat cultivation under temperature stress-prone areas.
更多
查看译文
关键词
antioxidative enzymes,ascorbate,proline,RT-PCR,transformed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要