The Dilemma of Including 'Hot' Models in Climate Impact Studies: A Hydrological Study

crossref(2023)

引用 0|浏览0
暂无评分
摘要
Abstract. Efficient adaptation strategies to climate change require estimating future impacts and the uncertainty surrounding this estimation. Over- or under-estimating future uncertainty may lead to maladaptation. Hydrological impact studies typically use a top-down approach in which multiple climate models are used to assess the uncertainty related to climate model structure and climate sensitivity. Despite ongoing debate, impact modelers have typically embraced the concept of "model democracy" in which each climate model is considered equally fit. The newer CMIP6 simulations, with several models showing a climate sensitivity larger than that of CMIP5 and larger than the likely range based on past climate information and understanding of planetary physics, have reignited the model democracy debate. Some have suggested that hot models be removed from impact studies to avoid skewing impact results toward unlikely futures. This large-sample study looks at the impact of removing hot models on the projections of future streamflow over 3,107 North American catchments. More precisely, the variability of future projections of mean, high, and low flows is evaluated using an ensemble of 19 CMIP6 GCMs, 5 of which are deemed "hot" based on their global equilibrium climate sensitivity (ECS). The results show that the reduced ensemble of 14 climate models provides streamflow projections with reduced future variability for Canada, Alaska, the Southwest US, and along the Pacific coast. Elsewhere, the reduced ensemble has either no impact or results in increased variability of future streamflow, indicating that outlier climate models do not necessarily provide outlier projections of future impacts. These results emphasize the delicate nature of climate model selection, especially based on global fitness metrics that may not be appropriate for local and regional assessments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要