High Contribution of New Particle Formation to Ultrafine Particles in Four Seasons in an Urban Atmosphere in South China

SSRN Electronic Journal(2023)

引用 2|浏览30
暂无评分
摘要
Ultra fine particles (UFP) cover the size range of both nucleation mode particles (NUC, Dp < 25 nm) and Aitken mode particles (AIT, 25 nm < Dp < 100 nm), and play important roles in radiative forcing and human health. In this study, we identified new particle formation (NPF) events and undefined events, explored their potential formation mechanism, and quantified their contributions to UFP number concentration (NUFP) in urban Dongguan of the Pearl River Delta (PRD) region. Field campaigns were carried out in four seasons in 2019 to measure particle number concentration in the size range of 4.7-673.2 nm, volatile organic compounds (VOCs), gaseous pollutants, chemical compositions in PM2.5, and meteorological parameters. The frequency of the occurrence of NPF, as indicated by a significant increase in NUC number concentration (NNUC), was 26 %, and that of the undefined event, as indicated by substantial increases in NNUC or AIT number concentration (NAIT), was 32 % during the whole campaign period. The NPF events mainly occurred in autumn (with a frequency of 59 %) and winter (33 %) and only occasionally in spring (4 %) and summer (4 %). On the contrary, the frequencies of the undefined events were higher in spring (52 %) and summer (38 %) than in autumn (19 %) and winter (22 %). The burst periods of the NPF events mainly occurred before 11:00 Local Time (LT), while those of the undefined events mainly occurred after 11:00 LT. Accompanied to NPF events were low concentrations of VOCs and high concentrations of O3. The undefined events by NUC or AIT were associated with the upwind transport of newly formed particles. Source apportionment analysis suggested that NPF and undefined events were the largest contributor to NNUC (51 ± 28 %), NAIT (41 ± 26 %), and NUFP (45 ± 27 %), while coal combustion and biomass burning, and traffic emission were the second largest contributor to NNUC (22 ± 20 %) and NAIT (39 ± 28 %), respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要