Estimating the Lowest Latitude of Baroclinic Growth

Oren Peles,Orli Lachmy

Journal of the Atmospheric Sciences(2023)

引用 0|浏览1
暂无评分
摘要
Midlatitude storm tracks are the most prominent feature of the midlatitude climate. The equatorward boundary of the storm tracks marks the transition from the dry subtropics to the temperate midlatitudes. This boundary can be estimated as the lowest latitude of efficient baroclinic growth. Scaling theories for the lowest latitude of baroclinic growth were previously suggested based on the domain-averaged parameters of the Eady growth rate and supercriticality. In this study, a new estimate for the lowest latitude of baroclinic growth is proposed, based on the assumption that baro-clinic growth is limited by the vertical scale of eddy fluxes. An equation for the eddy displacement flux is obtained from which the vertical scale is calculated, given the zonal-mean zonal wind and temperature profiles. It is found that the vertical scale of the eddy displacement flux and the observed baroclinic conversion rate decrease rapidly toward the equator around the same latitude. The seasonal cycle of the lowest latitude of baroclinic growth, calculated from the observed baro-clinic conversion rate, is compared with the theoretical estimates. The estimates based on the vertical scale of the eddy dis-placement flux and supercriticality agree well with the observed lowest latitude of baroclinic growth. In contrast, the estimate based on the Eady growth rate is located around 10 degrees-15 degrees equatorward. The estimate of the lowest latitude of baro-clinic growth may be used in future studies for explaining variations in the properties of the storm track, the Hadley cell edge, and the subtropical jet.
更多
查看译文
关键词
Atmospheric circulation,Baroclinic flows,Hadley circulation,Instability,Storm tracks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要