Dosimetric response of Gafchromic™ EBT-XD film to therapeutic protons.

Fada Guan,Xiaochun Wang, Ming Yang,Emily Draeger, Dae Han,Kiminori Iga,Fanqing Guo, Luis Perles,Yuting Li, Narayan Sahoo, Radhe Mohan,Zhe Chen

Precision radiation oncology(2023)

引用 4|浏览14
暂无评分
摘要
EBT-XD model of Gafchromic™ films has a broader optimal dynamic dose range, up to 40 Gy, compared to its predecessor models. This characteristic has made EBT-XD films suitable for high-dose applications such as stereotactic body radiotherapy and stereotactic radiosurgery, as well as ultra-high dose rate FLASH radiotherapy. The purpose of the current study was to characterize the dependence of EBT-XD film response on linear energy transfer (LET) and dose rate of therapeutic protons from a synchrotron. A clinical spot-scanning proton beam was used to study LET dependence at three dose-averaged LET (LETd) values of 1.0 keV/µm, 3.6 keV/µm, and 7.6 keV/µm. A research proton beamline was used to study dose rate dependence at 150 Gy/second in the FLASH mode and 0.3 Gy/second in the non-FLASH mode. Film response data from LETd values of 0.9 keV/µm and 9.0 keV/µm of the proton FLASH beam were also compared. Film response data from a clinical 6 MV photon beam were used as a reference. Both gray value method and optical density (OD) method were used in film calibration. Calibration results using a specific OD calculation method and a generic OD calculation method were compared. The four-parameter NIH Rodbard function and three-parameter rational function were compared in fitting the calibration curves. Experimental results showed that the response of EBT-XD film is proton LET dependent but independent of dose rate. Goodness-of-fit analysis showed that using the NIH Rodbard function is superior for both protons and photons. Using the "specific OD + NIH Rodbard function" method for EBT-XD film calibration is recommended.
更多
查看译文
关键词
EBT‐XD film,FLASH dose rate,linear energy transfer,proton therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要