Environmentally Adaptive Polymer Hydrogels: Maintaining Wet‐Soft Features in Extreme Conditions

Advanced Functional Materials(2023)

引用 2|浏览0
暂无评分
摘要
Hydrogels have been widely explored to adapt to different application circumstances. As typical wet-soft materials, the high-water content of hydrogels is beneficial to their wide biomedical applications. Moreover, hydrogels have been displaying considerable application potential in some high-tech areas, like brain-computer interface, intelligent actuator, flexible sensor, etc. However, traditional hydrogel is susceptive to freezing below zero, dehydration, performance swelling-induced deformation, and suffers from mechanical damage in extremely mechanical environments, which result in the loss of wet-soft peculiarities (e.g., flexibility, structure integrity, transparency), greatly limiting their applications. Therefore, reducing the freezing point, improving the dehydration/solution resistance, and designing mechanical adaptability are effective strategies to endow hydrogels with the extreme environmental adaptability, thus broadening their application fields. This review systematically summarizes research advances of environmentally adaptive hydrogels (EAHs), comprising anti-freezing, dehydration-resistant, acid/base/swelling deformation-resistant, and mechanical environment adaptive hydrogels (MEAHs). Firstly, fabrication methods are presented, including the deep eutectic solvent/ionic liquid substituent, the addition of salts, organogel, polymer network modification, and double network (DN) complex/nanocomposite strategy, etc. Meanwhile, the features of different approaches are overviewed. The mechanisms, properties, and applications (e.g., intelligent actuator, wound dressing, flexible sensor) of EAHs are demonstrated. Finally, the issues and future perspectives for EAHs' researches are demonstrated.
更多
查看译文
关键词
adaptive polymer hydrogels
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要