A multi-modal deep neural network for multi-class liver cancer diagnosis

Neural Networks(2023)

引用 2|浏览42
暂无评分
摘要
Liver disease is a potentially asymptomatic clinical entity that may progress to patient death. This study proposes a multi-modal deep neural network for multi-class malignant liver diagnosis. In parallel with the portal venous computed tomography (CT) scans, pathology data is utilized to prognosticate primary liver cancer variants and metastasis. The processed CT scans are fed to the deep dilated convolution neural network to explore salient features. The residual connections are further added to address vanishing gradient problems. Correspondingly, five pathological features are learned using a wide and deep network that gives a benefit of memorization with generalization. The down-scaled hierarchical features from CT scan and pathology data are concatenated to pass through fully connected layers for classification between liver cancer variants. In addition, the transfer learning of pre-trained deep dilated convolution layers assists in handling insufficient and imbalanced dataset issues. The fine-tuned network can predict three-class liver cancer variants with an average accuracy of 96.06% and an Area Under Curve (AUC) of 0.832. To the best of our knowledge, this is the first study to classify liver cancer variants by integrating pathology and image data, hence following the medical perspective of malignant liver diagnosis. The comparative analysis on the benchmark dataset shows that the proposed multi-modal neural network outperformed most of the liver diagnostic studies and is comparable to others.
更多
查看译文
关键词
Computer-aided diagnosis, Liver malignancy, Preprocessing, Medical imaging, Hepatocellular carcinoma, Metastasis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要