Coexistence of surface oxygen vacancy and interface conducting states in LaAlO3/SrTiO3 revealed by low-angle resonant soft X-ray scattering

arXiv (Cornell University)(2023)

引用 0|浏览47
暂无评分
摘要
Oxide heterostructures have shown rich physics phenomena, particularly in the conjunction of exotic insulator-metal transition (IMT) at the interface between polar insulator LaAlO3 and non-polar insulator SrTiO3 (LaAlO3/SrTiO3). Polarization catastrophe model has suggested an electronic reconstruction yielding to metallicity at both the interface and surface. Another scenario is the occurrence of surface oxygen vacancy at LaAlO3 (surface-Ov), which has predicted surface-to-interface charge transfer yielding metallic interface but insulating surface. To clarify the origin of IMT, one should probe surface-Ov and the associated electronic structures at both the surface and the buried interface simultaneously. Here, using low-angle resonant soft X-ray scattering (LA-RSXS) supported with first-principles calculations, we reveal the co-existence of the surface-Ov state and the interface conducting state only in conducting LaAlO3/SrTiO3 (001) films. Interestingly, both the surface-Ov state and the interface conducting state are absent for the insulating film. As a function of Ov density, while the surface-Ov state is responsible for the IMT, the spatial charge distribution is found responsible for a transition from two-dimensional-like to three-dimensional-like conducting accompanied by spectral weight transfer, revealing the importance of electronic correlation. Our results show the importance of surface-Ov in determining interface properties and provides a new strategy in utilizing LA-RSXS to directly probe the surface and buried interface electronic properties in complex oxide heterostructures.
更多
查看译文
关键词
surface oxygen vacancy,laalo3/srtio3,low-angle,x-ray
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要