Investigating the Effect of Misalignment on Membership Privacy in the White-box Setting

arxiv(2023)

引用 0|浏览14
暂无评分
摘要
Machine learning models have been shown to leak sensitive information about their training datasets. Models are increasingly deployed on devices, raising concerns that white-box access to the model parameters increases the attack surface compared to black-box access which only provides query access. Directly extending the shadow modelling technique from the black-box to the white-box setting has been shown, in general, not to perform better than black-box only attacks. A potential reason is misalignment, a known characteristic of deep neural networks. In the shadow modelling context, misalignment means that, while the shadow models learn similar features in each layer, the features are located in different positions. We here present the first systematic analysis of the causes of misalignment in shadow models and show the use of a different weight initialisation to be the main cause. We then extend several re-alignment techniques, previously developed in the model fusion literature, to the shadow modelling context, where the goal is to re-align the layers of a shadow model to those of the target model. We show re-alignment techniques to significantly reduce the measured misalignment between the target and shadow models. Finally, we perform a comprehensive evaluation of white-box membership inference attacks (MIA). Our analysis reveals that internal layer activation-based MIAs suffer strongly from shadow model misalignment, while gradient-based MIAs are only sometimes significantly affected. We show that re-aligning the shadow models strongly improves the former's performance and can also improve the latter's performance, although less frequently. Taken together, our results highlight that on-device deployment increases the attack surface and that the newly available information can be used to build more powerful attacks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要