A Method of Reducing Friction and Improving the Penetration Rate by Safely Vibrating the Drill-String at Surface

PROCESSES(2023)

引用 2|浏览7
暂无评分
摘要
Drill-string axial vibration at the surface technology is proposed to reduce the friction between the drill-string and the borehole wall, and to improve load transfer efficiency, the rate of penetration (ROP), and the extended-reach limit of a horizontal well. An analytical framework utilizing the "soft-string" model is constructed. The results obtained from numerical simulations reveal that during the slide drilling operation, the drill-string experiences an axial stick-slip motion, and the weight on bit (WOB) undergoes periodic oscillations. The conventional calibration method of the WOB in the weight indicator gauge is not applicable when the ROP is low. After applying axial vibration on the drill-string at the surface, the WOB increases and becomes smooth because of a release of friction. The amplitude and frequency of the exciting force are the main factors affecting surface vibration effectiveness. There is an optimal frequency for a given case (10 Hz in this paper). This means that the conventional manual pick-up and slack-off by drillers with a high amplitude and a low frequency has little effect on friction reduction. In addition, the conventional method can bring in high risk because of its high root mean square (RMS) acceleration. Safety evaluation results indicate that the drill-string is in a safe state under most of the exciting parameters. The results verify the feasibility and advantages of the proposed technology, and lay a solid theoretical foundation for its application in real drilling applications.
更多
查看译文
关键词
petroleum drilling,drill-string mechanics,friction reduction,vibration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要