Numerical investigation and analysis of indoor gas explosion: A case study of "6.13" major gas explosion accident in Hubei Province, China

JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES(2023)

引用 1|浏览0
暂无评分
摘要
Taking the ' 6.13 ' major gas explosion accident in Shiyan, Hubei Province, China as an example, three problems were studied in this work: (1)The determination of the volume of natural gas involved in the explosion; (2)The propagation process of shock wave inside the building and the damage evolution process of the accident-related building; (3)The overpressure and fragment injury to the person outside the building. Through the numerical simulation in ANSYS/LS-DYNA software, the volume of natural gas involved in the explosion is determined to be 10240 x 1400 x 400 cm (length x width x height) from three perspectives: the damage to the building, the distribution of overpressure inside the building, and the TNT equivalent of the explosion energy. The simulation results are in good line with the accident, which verifies the effectiveness of the scheme and the accuracy of the numerical model. Based on the reasonable filling scheme, the propagation process of shock waves inside the building, the damage evolution process of the building, and the injury ranges of overpressure and fragments outside the building are analyzed. It can be found that the propagation of shock waves in confined space is complex and variable. The explosion shock waves are first reflected and superimposed in the watercourse, resulting in pressure rise. At about 8ms, the shock waves rushed into the first-floor space of the building, and the maximum overpressure was about 0.56 MPa. At about 50 ms, the shock waves rushed into the second-floor space, and the maximum overpressure was about 0.139 MPa. The first and second-floor slabs and infilled walls were almost completely destroyed. The interior walls of the infilled walls are mainly collapsed, and the exterior walls are ejection around the building as the center. The peak displacement and peak velocity of the interior walls of each floor are about 15% of the exterior walls. The fragments which cause fragment injury mainly come from the retaining wall above the watercourse, the maximum velocity is about 89 m/s, and the maximum displacement is 8.9 m. The safety distance of fragment injury is about 8.8 m, while the safety distance of overpressure injury is about 4.6 m. The lethal distance of fragment injury is greater than that of overpressure injury. Compared with the distance between different damage levels of overpressure injury, the difference in fragment injury is small. Therefore, the safety assessment at the engineering level only needs to consider the safety distance of fragment injury. This study can provide suggestions for evaluating the damage of natural gas cloud explosions in confined spaces and is helpful for accident investigation and safety protection.
更多
查看译文
关键词
Gas explosion,Confined space,Urban gas pipeline,Personnel injury range,Construction damage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要