Electrocatalysis of Selective Chlorine Evolution Reaction: Fundamental Understanding and Catalyst Design

JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY(2023)

引用 1|浏览9
暂无评分
摘要
The electrochemical chlorine evolution reaction (CER) is an important electrochemical reaction and has been widely used in chlor-alkali electrolysis, on-site generation of ClO-, and Cl-2-mediated electrosynthesis. Although precious metal-based mixed metal oxides (MMOs) have been used as CER catalysts for more than half a century, they intrinsically suffer from a selectivity problem between the CER and parasitic oxygen evolution reaction (OER). Hence, the design of selective CER electrocatalysts is critically important. In this review, we provide an overview of the fundamental issues related to the electrocatalysis of the CER and design strategies for selective CER electrocatalysts. We present experimental and theoretical methods for assessing the active sites of MMO catalysts and the origin of the scaling relationship between the CER and the OER. We discuss kinetic analysis methods to understand the kinetics and mechanisms of CER. Next, we summarize the design strategies for new CER electrocatalysts that can enhance the reactivity of MMO-based catalysts and overcome their scaling relationship, which include the doping of MMO catalysts with foreign metals and the development of nonprecious metal-based catalysts and atomically dispersed metal catalysts.
更多
查看译文
关键词
selective chlorine evolution reaction,electrocatalysis,catalyst
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要