Design and experimental results of a 28 GHz, 400 kW gyrotron for electron cyclotron resonance heating

PLASMA SCIENCE & TECHNOLOGY(2023)

引用 0|浏览5
暂无评分
摘要
A high-power 28 GHz gyrotron has been successfully developed at the Institute of Applied Electronics, China Academy of Engineering Physics. This gyrotron was designed for electron cyclotron resonance heating (ECRH) in the spherical tokamak XL-50. A diode magnetron injection gun was designed to produce the required gyrating electron beam. The gyrotron operates in the TE8,3 mode in a cylindrical open cavity. An internal quasi-optical mode converter was designed to convert the operating mode into a fundamental Gaussian wave beam and separate the spent electron beam from the outgoing microwave power. A tube has been built and successfully tested. The operational frequency of the tube is 28.1 GHz. For beam parameters at an accelerating voltage of 71 kV and beam current of 16 A, the gyrotron has delivered an output power of 400 kW, with a pulse length of 5 s. The output efficiency is about 50% with a single-stage depressed collector. The gyrotron has been installed on the XL-50 and has played an important role in the ECRH experiments.
更多
查看译文
关键词
ECRH, gyrotron, high power, long pulse
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要