Improved adaptive nonlinear control for variable speed wind-turbine fed by direct matrix converter

REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE(2023)

引用 0|浏览3
暂无评分
摘要
This paper proposes a robust decoupling power algorithm based on a doubly fed induction generator (DFIG) for variable speed wind-turbine (WT). The DFIG rotor circuit is fed by the direct matrix converter (DMC), which presents several features such as no need to the dc-bus voltage, sinusoidal supply, rotor side waveforms, bidirectional power flow, and adjustable input power factor. The 18 bidirectional switches are controlled using the Venturini modulation technique. On the other hand, the DFIG stator circuit is connected directly to the grid. The nonlinear control strategy based on feedback linearization is applied to control the stator power (Ps and Qs) independently using the rotor quadrature and direct currents (irq and ird), which present the images of the previous stator powers. Some limitations appear in the power algorithm using the conventional pi controller, especially in power tracking, error, and quality. In this context, the model reference adaptive controller (MRAC) presents an alternative solution, a robust and efficient controller proposed instead of the pi controllers to control stator powers. Finally, the simulation results confirm that the proposed algorithm could work under hard conditions and demonstrate that the wind energy conversion system (WECS) provides enhanced dynamic responses in transient and steady states and good power quality delivered to the grid.
更多
查看译文
关键词
adaptive,wind-turbine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要