Perpendicular Alignment of Covalent Organic Framework (COF) Pore Channels by Solvent Vapor Annealing

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2023)

引用 4|浏览19
暂无评分
摘要
Covalent organic frameworks (COFs) have showcased great potential in diverse applications such as separation and catalysis, where mass transfer confined in their pore channels plays a significant role. However, anisotropic orientation usually occurs in polycrystalline COFs, and perpendicular alignment of COF pore channels is ultimately desired to maximize their performance. Herein, we demonstrate a strategy, solvent vapor annealing, to reorient COF pore channels from anisotropic orientation to perpendicular alignment. COF thin films are first synthesized to have flexible N-H bonds in their skeletons, thus having structural mobility to enable molecular rearrangement. A solvent with low relative permittivity and a conjugated structure is then identified to have a strong affinity toward the COFs, allowing its vapor to easily penetrate into the COF interlayers. The solvent vapor weakens the pi-pi interaction and consequently allows the COF monolayers to dissociate. The COF monolayers undergo a reorientation process that converts from random stacking into the face-on stacking fashion, in which the through COF pores are perpendicularly aligned. The aligned COF film exhibits high separation precision toward ions featuring a size difference down to 2 angstrom, which is 8 times higher than that of the anisotropically oriented counterpart. This work opens up an avenue for COF orientation regulation by solvent vapor annealing and reveals the essential role of the perpendicular alignment of COF pore channels to enable precision separations.
更多
查看译文
关键词
covalent organic framework,pore channels,cof,perpendicular alignment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要