Contrasting Capability of Single Atom Palladium for Thermocatalytic versus Electrocatalytic Nitrate Reduction Reaction

ACS CATALYSIS(2023)

引用 4|浏览15
暂无评分
摘要
The occurrence of high concentrations of nitrate in various water resources is a significant environmental and human health threat, demanding effective removal technologies. Single atom alloys (SAAs) have emerged as a promising bimetallic material architecture in various thermocatalytic and electrocatalytic schemes including nitrate reduction reaction (NRR). This study suggests that there exists a stark contrast between thermocatalytic (T-NRR) and electrocatalytic (E-NRR) pathways that resulted in dramatic differences in SAA performances. Among Pd/Cu nanoalloys with varying Pd-Cu ratios from 1:100 to 100:1, Pd/Cu(1:100) SAA exhibited the greatest activity (TOFPd = 2 min-1) and highest N2 selectivity (94%) for E-NRR, while the same SAA performed poorly for T-NRR as compared to other nanoalloy counterparts. DFT calculations demonstrate that the improved performance and N2 selectivity of Pd/Cu(1:100) in E-NRR compared to T-NRR originate from the higher stability of NO3* in electrocatalysis and a lower N2 formation barrier than NH due to localized pH effects and the ability to extract protons from water. This study establishes the performance and mechanistic differences of SAA and nanoalloys for T-NRR versus E-NRR.
更多
查看译文
关键词
single atom palladium,thermocatalytic,nitrate,reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要