How are N-methylcarbamates encapsulated by -cyclodextrin: insight into the binding mechanism

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2023)

引用 3|浏览6
暂无评分
摘要
Guest molecules containing chromophore groups encapsulated by beta-cyclodextrin (beta-CD) generate circular dichroism (CD) signals, which enables a preliminary prediction of their binding modes. However, the accurate determination of the representative binding conformation (RC) remains a challenging task due to the complex conformational space of these host-guest systems. Here, we combine a molecular dynamics/quantum mechanics/continuum solvent model (MD/QM/CSM) with induced circular dichroism (ICD) data (N. L. Pacioni, A. B. Pierini and A. V. Veglia, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 103, 319-324.) to explore the binding mechanism of beta-CD with four N-methylcarbamate molecules: promecarb (PC), bendiocarb (BC), carbaryl (CY) and carbofuran (CF). In aqueous solution, their stability decreases as: PC > BC > CY > CF. Comparing the ECD spectra computed from TD-DFT with the ICD data can help eliminate many common binding configurations and identify the RC. The host-guest binding affinities (BAs) estimated using a ONIOM2(B971:PM6)/SMD model reproduce the measured binding trend, reveal the competition between the non-covalent interaction and solvent effect and explain the large difference in their binding modes. We also examine the fluctuations in the computed BA using similar structures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要