Deleting specific residues from the HNH linkers creates a CRISPR-SpCas9 variant with high fidelity and efficiency

JOURNAL OF BIOTECHNOLOGY(2023)

引用 0|浏览2
暂无评分
摘要
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems are immunological defenses used in archaea and bacteria to recognize and destroy DNA from external invaders. The CRISPR-SpCas9 system harnessed from Streptococcus pyogenes (SpCas9) has become the most widely utilized genome editing tool and shows promise for clinical application. However, the off-target effect is still the major challenge for the genome editing of CRISPR-SpCas9. Based on analysis of the structure and cleavage procedures, we proposed two strategies to modify the SpCas9 structure and reduce off-target effects. Shortening the HNH or REC3 linkers (Strategy #1) aimed to move the primary position of HNH or REC3 far away from the single-guide RNA (sgRNA)/DNA hybrid (hybrid), while elongating the helix around the sgRNA (Strategy #2) aimed to strengthen the contacts between SpCas9 and the sgRNA/DNA. We designed 11 SpCas9 variants (variant No.1- variant No.11) and verified their efficiencies on the classic genome site EMX1-1, EMX1-1-OT1, and EMX1-1-OT2. The top three effective SpCas9 variants, variant No.1, variant No.2, and variant No.5, were additionally validated on other genome sites. The further selected variant No.1 was compared with two previous SpCas9 variants, HypaCas9 (a hyper-accurate Cas9 variant released in 2017) and eSpCas9 (1.1) (an "enhanced speci-ficity" SpCas9 variant released in 2016), on two genome sites, EMX1-1 and FANCF-1. The results revealed that the deletion of Thr769 and Gly906 could substantially decrease off-target effects, while maintaining robust on-target efficiency in most of the selected genome sites.
更多
查看译文
关键词
CRISPR,SpCas9,High fidelity,Efficiency,HNH linkers,Design
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要