Utilizing Cationic Vacancies and Spontaneous Polarization on Cathode to Enhance Zinc-Ion Storage and Inhibit Dendrite Growth in Zinc-Ion Batteries

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2023)

引用 2|浏览7
暂无评分
摘要
High energy density and intrinsic safety are the central pursuits in developing rechargeable Zinc-ion batteries (ZIBs). The capacity and stability of nickel cobalt oxide (NCO) cathode are unsatisfactory because of its semiconductor character. Herein, we propose a built-in electric field (BEF) approach by synergizing cationic vacancies and ferroelectric spontaneous polarization on cathode side to facilitate electron adsorption and suppress zinc dendrite growth on the anode side. Concretely, NCO with cationic vacancies was constructed to expand lattice spacing for enhanced zinc-ion storage. Heterojunction with BEF leads to the Heterojunction//Zn cell exhibiting a capacity of 170.3 mAh g(-1) at 400 mA g(-1) and delivering a competitive capacity retention of 83.3 % over 3000 cycles at 2 A g(-1). We conclude the role of spontaneous polarization in suppressing zinc dendrite growth dynamics, which is conducive to developing high-capacity and high-safety batteries via tailoring defective materials with ferroelectric polarization on the cathode.
更多
查看译文
关键词
Built-in Electric Field, Defect, Heterojunction Materials, Spontaneous Polarization, Zinc-Ion Batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要