Investigating spurious cracking in finite element models for concrete fracture

COMPUTERS AND CONCRETE(2023)

引用 0|浏览1
暂无评分
摘要
This paper presents an investigation of variables that cause spurious cracking in numerical modeling of concrete fracture. Spurious cracks appear due to the approximate nature of numerical modeling. They overestimate the dissipated energy, leading to divergent results with mesh refinement. This paper is limited to quasi-static loading regime, homogeneous models, cracking as the only nonlinear mode of deformation and cracking only due to tensile loading. Under these conditions, some variables that can be related to spurious cracking are: mesh alignment, ductility, crack band width, structure size, mesh refinement and load increment size. Case studies illustrate the effect of each variable and convergence analyses demonstrate that, after all, load-increment size is the most important variable. Theoretically, a sufficiently small load increment is able to eliminate or at least alleviate the detrimental influence of the other variables. Such load-increment size might be prohibitively small, rendering the simulation unfeasible. Hence, this paper proposes two alternatives. First, it is proposed an algorithm that automatically find such small load increment size automatically, which not necessarily avoid large computations. Then, it is proposed a double simulation technique, in which the crack is forced to propagate through the localization zone.
更多
查看译文
关键词
concrete,convergence,finite element,spurious cracks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要