Applications of CNOP-P Method to Predictability Studies of Terrestrial Ecosystems

ATMOSPHERE(2023)

引用 1|浏览3
暂无评分
摘要
In this paper, recent research on terrestrial ecosystem predictability using the conditional nonlinear optimal parameter perturbation (CNOP-P) method is summarized. The main findings include the impacts of uncertainties in climate change on uncertainties in simulated terrestrial ecosystems, the identification of key physical parameters that lead to large uncertainties in terrestrial ecosystem modeling and prediction, and the evaluation of the simulation ability and prediction skill of terrestrial ecosystems by reducing key physical parameter errors. The study areas included the Inner Mongolia region, north-south transect of eastern China, and Qinghai-Tibet Plateau region. The periods of the studies were from 1961 to 1970 for the impacts of uncertainties in climate change on uncertainties in simulated terrestrial ecosystems, and from 1951 to 2000 for the identification of the most sensitive combinations of physical parameters. Climatic Research Unit (CRU) data were employed. The numerical results indicate the important role of nonlinear changes in climate variability due to the occurrences of extreme events characterized by CNOP-P in the abrupt grassland ecosystem equilibrium state and formation of carbon sinks in China. Second, the most sensitive combinations of physical parameters to the uncertainties in simulations and predictions of terrestrial ecosystems identified by the CNOP-P method were more sensitive than those obtained by traditional methods (e.g., one-at-a-time (OAT) and stochastic methods). Furthermore, the improvement extent of the simulation ability and prediction skill of terrestrial ecosystems by reducing the errors of the sensitive physical parameter combinations identified by the CNOP-P method was higher than that by the traditional methods.
更多
查看译文
关键词
ecosystems,predictability studies
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要