Simulation of Cortical and Cancellous Bone to Accelerate Tissue Regeneration

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 1|浏览13
暂无评分
摘要
Different tissues have complex anisotropic structures to support biological functions. Mimicking these complex structures in vitro remains a challenge in biomaterials designs. Here, inspired by different types of silk nanofibers, a composite materials strategy is pursued toward this challenge. A combination of fabrication methods is utilized to achieve separate control of amorphous and beta-sheet rich silk nanofibers in the same solution. Aqueous solutions containing two types of silk nanofibers are simultaneously treated with an electric field and with ethylene glycol diglycidyl ether (EGDE). Under these conditions, the beta-sheet rich silk nanofibers in the mixture responded to the electric field while the amorphous nanofibers are active in the crosslinking process with the EGDE. As a result, cryogels with anisotropic structures are prepared, including mimics for cortical- and cancellous-like bone biomaterials as a complex osteoinductive niche. In vitro studies revealed that mechanical cues of the cryogels induced osteodifferentiation of stem cells while the anisotropy inside the cryogels influenced immune reactions of macrophages. These bioactive cryogels also stimulated improved bone regeneration in vivo through modulation of inflammation, angiogenesis and osteogenesis responses, suggesting an effective strategy to develop bioactive matrices with complex anisotropic structures beneficial to tissue regeneration.
更多
查看译文
关键词
tissue regeneration,cancellous bone,cortical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要