Novel Sn-Doped WO3 Photocatalyst to Degrade the Organic Pollutants Prepared by Green Synthesis Approach

ELECTRONIC MATERIALS LETTERS(2024)

引用 0|浏览3
暂无评分
摘要
The organic pollutants are polluting the drinking water so, it is a field of great interest to clean this water by using some sophisticated materials. For this purpose, the nanostructured materials are playing vital role to attain sustainable and pure drinking water by degrading organic pollutants. The synthesis of such photocatalytic material without using harmful chemicals, is one of the important existing challenges. Thus, to tackle this challenge, we have prepared green synthesized Sn-doped WO3 nanomaterials by varying the content of Sn from 2 to 6 wt% and assisting from moringa oleifera seeds' extract. The crystal structure, morphology, optical and photoluminescence properties of as prepared samples were investigated through x-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet visible spectroscopy (UV-vis) and photoluminescence spectroscopy (PL) techniques. Among of as prepared samples, the 4Sn-WO3 (4 wt% Sn doped WO3) sample has exhibited the reduced optical band gap value i.e. 2.80 eV than 3.02 eV for pure WO3 sample. This optimized sample has also shown the lowest e-h recombination rate. To test the photocatalytic performance, the methylene blue was used as a model dye. Out of all samples, 4Sn-WO3 sample has shown 95% degradation activity against this water pollutant. These findings specify that the as mentioned novel photocatalytic nanomaterial will provide a significant advancement in the environmental field to degrade the organic pollutants.
更多
查看译文
关键词
Green synthesis,Sn-doped WO3,Moringa oleifera,Photocatalysis,Methylene blue
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要