Structure Optimization of 12β-O-γ-Glutamyl Oleanolic Acid Derivatives Resulting in Potent FXR Antagonist/Modulator for NASH Therapy

Pharmaceuticals(2023)

引用 0|浏览2
暂无评分
摘要
The farnesoid X receptor (FXR) plays a crucial role in regulating the metabolism of bile acids, lipids, and sugars. Consequently, it is implicated in the treatment of various diseases, including cholestasis, diabetes, hyperlipidemia, and cancer. The advancement of novel FXR modulators holds immense importance, especially in managing metabolic disorders. In this study, a series of oleanolic acid (OA) derivatives bearing 12β-O-(γ-glutamyl) groups were designed and synthesized. Using a yeast one-hybrid assay, we established a preliminary structure–activity relationship (SAR) and identified the most potent compound, 10b, which selectively antagonizes FXR over other nuclear receptors. Compound 10b can differentially modulate the downstream genes of FXR, including with the upregulation of the CYP7A1 gene. In vivo testing revealed that 10b (100 mg·Kg−1) not only effectively inhibits lipid accumulation in the liver but also prevents liver fibrosis in both BDL rats and HFD mice. Molecular modeling indicated that the branched substitution of 10b extends into the H11–H12 region of FXR-LBD, possibly accounting for its CYP7A1 upregulation, which is different from a known OA 12β-alkonate. These findings suggest that 12-glutamyl OA derivative 10b represents a promising candidate for the treatment of nonalcoholic steatohepatitis (NASH).
更多
查看译文
关键词
oleanolic acid,FXR modulator,gene regulation,liver cirrhosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要