Laplace-Approximated Neural Additive Models: Improving Interpretability with Bayesian Inference

CoRR(2023)

引用 0|浏览16
暂无评分
摘要
Deep neural networks (DNNs) have found successful applications in many fields, but their black-box nature hinders interpretability. This is addressed by the neural additive model (NAM), in which the network is divided into additive sub-networks, thus making apparent the interaction between input features and predictions. In this paper, we approach the additive structure from a Bayesian perspective and develop a practical Laplace approximation. This enhances interpretability in three primary ways: a) It provides credible intervals for the recovered feature interactions by estimating function-space uncertainty of the sub-networks; b) it yields a tractable estimate of the marginal likelihood, which can be used to perform an implicit selection of features through an empirical Bayes procedure; and c) it can be used to rank feature pairs as candidates for second-order interactions in fine-tuned interaction models. We show empirically that our proposed Laplace-approximated NAM (LA-NAM) improves performance and interpretability on tabular regression and classification datasets and challenging real-world medical tasks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要