Hybrid eigensolvers for nuclear configuration interaction calculations

COMPUTER PHYSICS COMMUNICATIONS(2023)

引用 0|浏览13
暂无评分
摘要
We examine and compare several iterative methods for solving large-scale eigenvalue problems arising from nuclear structure calculations. In particular, we discuss the possibility of using block Lanczos method, a Chebyshev filtering based subspace iterations and the residual minimization method accelerated by direct inversion of iterative subspace (RMM-DIIS) and describe how these algorithms compare with the standard Lanczos algorithm and the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm. Although the RMM-DIIS method does not exhibit rapid convergence when the initial approximations to the desired eigenvectors are not sufficiently accurate, it can be effectively combined with either the block Lanczos or the LOBPCG method to yield a hybrid eigensolver that has several desirable properties. We will describe a few practical issues that need to be addressed to make the hybrid solver efficient and robust.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
更多
查看译文
关键词
Nuclear configuration interaction calculation,Large-scale eigenvalue computation,Hybrid eigensolver
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要