Spatio-temporal variation of bacterial community structure in two intertidal sediment types of Jiaozhou Bay

Environmental Research(2023)

引用 1|浏览0
暂无评分
摘要
The intertidal sediment environment is dynamic and the biofilm bacterial community within it must constantly adapt, but an understanding of the differences in the biofilm bacterial community within sediments of different types is still relatively limited. The semi-enclosed Jiaozhou Bay has a temperate monsoon climate, with strong currents at the mouth of the bay. In this study, the structure of the bacterial community in Jiaozhou Bay sediment biofilms are described using high-throughput 16 S rRNA gene sequencing and the effects of temporal change and different sediment environment types are discussed. Alpha diversity was significantly higher in sandy samples than in muddy samples. Sandy sediments with increased heterogeneity promote bacterial aggregation. Beta diversity analysis showed significant differences between sediment types and between stations. Proteobacteria and Acidobacteria were significantly more abundant at ZQ, while Campilobacterota was significantly more abundant at LC. The relative abundances of Bacteroidetes, Campilobacterota, Firmicutes, and Chloroflexi were significantly higher in the muddy samples, while Actinobacteria and Proteobacteria were higher in the sandy samples. There were different phylum-level biomarkers between sediment types at different stations. There were also different patterns of functional enrichment in biogeochemical cycles between sediment types and stations with the former having more gene families that differed significantly, highlighting their greater role in determining bacterial function. Bacterial amplicon sequence variant variation between months was less than KEGG ortholog variation between months, presumably the temporal change had an impact on shaping the intertidal sediment bacterial community, although this was less clear at the gene family level. Random forest prediction yielded a combination of 43 family-level features that responded well to temporal change, reflecting the influence of temporal change on sediment biofilm bacteria.
更多
查看译文
关键词
Biofilm,Seasonal variation,Grain size,LEfSe,Gene function
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要