Mg2+ and Cu2+ Charging Agents Improving Electrophoretic Deposition Efficiency and Coating Adhesion of Nano-TbF3 on Sintered Nd-Fe-B Magnets

Materials(2023)

引用 0|浏览5
暂无评分
摘要
In order to prepare nano-TbF3 coating with high quality on the surface of Nd-Fe-B magnets by electrophoretic deposition (EPD) more efficiently, Mg2+ and Cu2+ charging agents are introduced into the electrophoretic suspension and the influence on the electrophoretic deposition is systematically investigated. The results show that the addition of Mg2+ and Cu2+ charging agents can improve the electrophoretic deposition efficiency and coating adhesion of nano-TbF3 powders on sintered Nd-Fe-B magnets. The EPD efficiency increases by 116% with a relative content of Mg2+ as 3%, while it increases by 109% with a relative content of Cu2+ as 5%. Combining the Hamaker equation and diffusion electric double layer theory, the addition of Mg2+ and Cu2+ can change the zeta potential of charged particles, resulting in the improvement of EPD efficiency. The relative content of Mg2+ below 3% and Cu2+ below 5% can increase the thickness of the diffusion electric double layer, the excessive addition of a charging agent will compress the diffusion electric double layer, and thicker diffusion layer represents higher zeta potential. Furthermore, the addition of Mg2+ and Cu2+ charging agents greatly improves the coating adhesion, and the critical load for the cracking of the coating increases to 146.4 mN and 40.2 mN from 17.9 mN, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要