The performance of speckle filters on Copernicus Sentinel-1 SAR images containing natural oil slicks

Cristina A. Vrînceanu,Stephen Grebby,Stuart Marsh

Quarterly Journal of Engineering Geology and Hydrogeology(2023)

引用 0|浏览0
暂无评分
摘要
Synthetic Aperture Radar (SAR) is traditionally used in the identification, mapping, and analysis of petroleum slicks, regardless of their origin. On SAR images, oil slicks appear as dark patches that contrast with the brightness of the surrounding sea surface. This distinction allows for automated detection algorithms to be designed using computer vision methods for objective oil slick identification. Nevertheless, efficient interpretation of the SAR imagery by statistical analysis can be diminished due to the speckle effect present on SAR images, a granular artefact associated with the coherent nature of SAR, which visually degrades the image quality. In this study, a quantitative and qualitative assessment of common SAR image despeckling methods is presented, analyzing their performance when applied to images containing natural oil slicks. The assessment is performed on Copernicus Sentinel-1 images acquired with various temporal and environmental conditions. The assessment covers a diverse area of filters that employ Bayesian and non-linear statistics in the spatial, transform and wavelet domains, focusing on their demonstrated performance and capabilities for edge and texture retention. In summary, the results reveal that filters using local statistics in the spatial domain produce consistent desired effects. The novel SAR-BM3D algorithm can be used effectively, albeit with a higher computational demand. Supplementary material: Implementations of the speckle filters used in this paper are made available at: https://github.com/cavrinceanu/specklefilters under an MIT license. Image statistics data is available for Tables 3-11 at: https://doi.org/10.6084/m9.figshare.13010405 Thematic collection: This article is part of the Remote sensing for site investigations on Earth and other planets collection available at: https://www.lyellcollection.org/cc/remote-sensing-for-site-investigations-on-earth-and-other-planets
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要