Data from Identification of a <i>Cyclin D1</i> Network in Prostate Cancer That Antagonizes Epithelial–Mesenchymal Restraint

crossref(2023)

引用 0|浏览5
暂无评分
摘要
Abstract

Improved clinical management of prostate cancer has been impeded by an inadequate understanding of molecular genetic elements governing tumor progression. Gene signatures have provided improved prognostic indicators of human prostate cancer. The TGF-β/BMP-SMAD4 signaling pathway, which induces epithelial–mesenchymal transition (EMT), is known to constrain prostate cancer progression induced by Pten deletion. Herein, cyclin D1 inactivation reduced cellular proliferation in the murine prostate in vivo and in isogenic oncogene–transformed prostate cancer cell lines. The in vivo cyclin D1–mediated molecular signature predicted poor outcome of recurrence-free survival for patients with prostate cancer (K-means HR, 3.75, P = 0.02) and demonstrated that endogenous cyclin D1 restrains TGF-β, Snail, Twist, and Goosecoid signaling. Endogenous cyclin D1 enhanced Wnt and ES cell gene expression and expanded a prostate stem cell population. In chromatin immunoprecipitation sequencing, cyclin D1 occupied genes governing stem cell expansion and induced their transcription. The coordination of EMT restraining and stem cell expanding gene expression by cyclin D1 in the prostate may contribute to its strong prognostic value for poor outcome in biochemical-free recurrence in human prostate cancer. Cancer Res; 74(2); 508–19. ©2013 AACR.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要