Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks

Nature Protocols(2023)

引用 6|浏览29
暂无评分
摘要
Enzymes are outstanding natural catalysts with exquisite 3D structures, initiating countless life-sustaining biotransformations in living systems. The flexible structure of an enzyme, however, is highly susceptible to non-physiological environments, which greatly limits its large-scale industrial applications. Seeking suitable supports to immobilize fragile enzymes is one of the most efficient routes to ameliorate the stability problem. This protocol imparts a new bottom-up strategy for enzyme encapsulation using a hydrogen-bonded organic framework (HOF-101). In short, the surface residues of the enzyme can trigger the nucleation of HOF-101 around its surface through the hydrogen-bonded biointerface. As a result, a series of enzymes with different surface chemistries are able to be encapsulated within a highly crystalline HOF-101 scaffold, which has long-range ordered mesochannels. The details of experimental procedures are described in this protocol, which involve the encapsulating method, characterizations of materials and biocatalytic performance tests. Compared with other immobilization methods, this enzyme-triggering HOF-101 encapsulation is easy to operate and affords higher loading efficiency. The formed HOF-101 scaffold has an unambiguous structure and well-arranged mesochannels, favoring mass transfer and understanding of the biocatalytic process. It takes ~13.5 h for successful synthesis of enzyme-encapsulated HOF-101, 3–4 d for characterizations of materials and ~4 h for the biocatalytic performance tests. In addition, no specific expertise is necessary for the preparation of this biocomposite, although the high-resolution imaging requires a low-electron-dose microscope technology. This protocol can provide a useful methodology to efficiently encapsulate enzymes and design biocatalytic HOF materials.
更多
查看译文
关键词
Biomaterials – proteins,Chemical engineering,Life Sciences,general,Biological Techniques,Analytical Chemistry,Microarrays,Computational Biology/Bioinformatics,Organic Chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要