GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19

Nature(2023)

引用 46|浏览39
暂无评分
摘要
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown 1 to be highly efficient for discovery of genetic associations 2 . Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group 3 . Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling ( JAK1 ), monocyte–macrophage activation and endothelial permeability ( PDE4A ), immunometabolism ( SLC2A5 and AK5 ), and host factors required for viral entry and replication ( TMPRSS2 and RAB2A ).
更多
查看译文
关键词
genetic variants,meta-analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要