On the Finite-Time Behavior of Suboptimal Linear Model Predictive Control

2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC(2023)

引用 0|浏览3
暂无评分
摘要
Inexact methods for model predictive control (MPC), such as real-time iterative schemes or time-distributed optimization, alleviate the computational burden of exact MPC by providing suboptimal solutions. While the asymptotic stability of such algorithms is well studied, their finite-time performance has not received much attention. In this work, we quantify the performance of suboptimal linear model predictive control in terms of the additional closed-loop cost incurred due to performing only a finite number of optimization iterations. Leveraging this novel analysis framework, we propose a novel suboptimal MPC algorithm with a diminishing horizon length and finite-time closed-loop performance guarantees. This analysis allows the designer to plan a limited computational power budget distribution to achieve a desired performance level. We provide numerical examples to illustrate the algorithm's transient behavior and computational complexity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要