The Noncommutative Edmonds' Problem Re-visited

CoRR(2023)

引用 0|浏览7
暂无评分
摘要
Let $T$ be a matrix whose entries are linear forms over the noncommutative variables $x_1, x_2, \ldots, x_n$. The noncommutative Edmonds' problem (NSINGULAR) aims to determine whether $T$ is invertible in the free skew field generated by $x_1,x_2,\ldots,x_n$. Currently, there are three different deterministic polynomial-time algorithms to solve this problem: using operator scaling [Garg, Gurvits, Oliveira, and Wigserdon (2016)], algebraic methods [Ivanyos, Qiao, and Subrahmanyam (2018)], and convex optimization [Hamada and Hirai (2021)]. In this paper, we present a simpler algorithm for the NSINGULAR problem. While our algorithmic template is similar to the one in Ivanyos et. al.(2018), it significantly differs in its implementation of the rank increment step. Instead of computing the limit of a second Wong sequence, we reduce the problem to the polynomial identity testing (PIT) of noncommutative algebraic branching programs (ABPs). This enables us to bound the bit-complexity of the algorithm over $\mathbb{Q}$ without requiring special care. Moreover, the rank increment step can be implemented in quasipolynomial-time even without an explicit description of the coefficient matrices in $T$. This is possible by exploiting the connection with the black-box PIT of noncommutative ABPs [Forbes and Shpilka (2013)].
更多
查看译文
关键词
noncommutative edmonds,re-visited
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要