Tunable all-optical logic gates based on nonreciprocal topologically protected edge modes

arxiv(2023)

引用 0|浏览3
暂无评分
摘要
All-optical logic gates have been studied intensively for their potential to enable broadband, low-loss, and high-speed communication. However, poor tunability has remained a key challenge in this field. In this paper, we propose a Y-shaped structure composed of Yttrium Iron Garnet (YIG) layers that can serve as tunable all-optical logic gates, including, but not limited to, OR, AND, and NOT gates, by applying external magnetic fields to magnetize the YIG layers. Our findings demonstrate that these logic gates are based on topologically protected one-way edge modes, ensuring exceptional robustness against imperfections and nonlocal effects while maintaining extremely high precision. Furthermore, the operating band of the logic gates is shown to be tunable. In addition, we introduce a straightforward and practical method for controlling and switching the logic gates between "work", "skip", and "stop" modes. These findings have important implications for the design of high-performance and precise all-optical integrated circuits.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要