Observational predictions for Thorne-\.Zytkow objects

R. Farmer,M. Renzo, Y. Götberg,E. Bellinger, S. Justham,S. E de Mink

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2023)

引用 0|浏览15
暂无评分
摘要
Thorne-$\.Z$ytkow objects (T$\.Z$O) are potential end products of the merger of a neutron star with a non-degenerate star. In this work, we have computed the first grid of evolutionary models of T$\.Z$Os with the MESA stellar evolution code. With these models, we predict several observational properties of T$\.Z$Os, including their surface temperatures and luminosities, pulsation periods, and nucleosynthetic products. We expand the range of possible T$\.Z$O solutions to cover $3.45 \lesssim \log \left(T/K\right) \lesssim 3.65$ and $4.85 \lesssim \log \left(L/L_{\odot}\right) \lesssim 5.5$. Due to the much higher densities our T$\.Z$Os reach compared to previous models, if T$\.Z$Os form we expect them to be stable over a larger mass range than previously predicted, without exhibiting a gap in their mass distribution. Using the GYRE stellar pulsation code we show that T$\.Z$Os should have fundamental pulsation periods of 1000--2000 days, and period ratios of $\approx$0.2--0.3. Models computed with a large 399 isotope fully-coupled nuclear network show a nucleosynthetic signal that is different to previously predicted. We propose a new nucleosynthetic signal to determine a star's status as a T$\.Z$O: the isotopologues $^{44}\rm{Ti} \rm{O}_2$ and $^{44}\rm{Ti} \rm{O}$, which will have a shift in their spectral features as compared to stable titanium-containing molecules. We find that in the local Universe (~SMC metallicities and above) T$\.Z$Os show little heavy metal enrichment, potentially explaining the difficulty in finding T$\.Z$Os to-date.
更多
查看译文
关键词
observational predictions,thorne–żytkow,objects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要