Author Correction: Equivalent running leg lengths require prosthetic legs to be longer than biological legs during standing

Scientific Reports(2023)

引用 0|浏览14
暂无评分
摘要
We aimed to determine a method for prescribing a standing prosthetic leg length (ProsL) that results in an equivalent running biological leg length (BioL) for athletes with unilateral (UTTA) and bilateral transtibial amputations (BTTA). We measured standing leg length of ten non-amputee (NA) athletes, ten athletes with UTTA, and five athletes with BTTA. All athletes performed treadmill running trials from 3 m/s to their maximum speed. We calculated standing and running BioL and ProsL lengths and assessed the running-to-standing leg length ratio (L ratio ) at three instances during ground contact: touchdown, mid-stance, and take-off. Athletes with UTTA had 2.4 cm longer standing ProsL than BioL length (p = 0.030), but their ProsL length were up to 3.3 cm shorter at touchdown and 4.1 cm shorter at mid-stance than BioL, at 3–11.5 m/s. At touchdown, mid-stance, and take-off, athletes with BTTA had 0.01–0.05 lower L ratio at 3 m/s (p < 0.001) and 0.03–0.07 lower L ratio at 10 m/s (p < 0.001) in their ProsL compared to the BioL of NA athletes. During running, ProsL were consistently shorter than BioL. To achieve equivalent running leg lengths at touchdown and take-off, athletes with UTTA should set their running-specific prosthesis height so that their standing ProsL length is 2.8–4.5% longer than their BioL length, and athletes with BTTA should set their running-specific prosthesis height so that their standing ProsL lengths are at least 2.1–3.9% longer than their presumed BioL length. Setting ProsL length to match presumed biological dimensions during standing results in shorter legs during running.
更多
查看译文
关键词
leg lengths,prosthetic legs,biological legs,author correction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要