Diagnosis of Fast Electron Transport by Coherent Transition Radiation

NEW JOURNAL OF PHYSICS(2023)

引用 0|浏览12
暂无评分
摘要
Transport of fast electron in overdense plasmas is of key importance in high energy density physics. However, it is challenging to diagnose the fast electron transport in experiments. In this article, we study coherent transition radiation (CTR) generated by fast electrons on the back surface of the target by using 2D and 3D first-principle particle-in-cell (PIC) simulations. In our simulations, aluminium target of 2.7 g/cc is simulated in two different situations by using a newly developed high order implicit PIC code. Comparing realistic simulations containing collision and ionization effects, artificial simulations without taking collision and ionization effects into account significantly underestimate the energy loss of electron beam when transporting in the target, which fail to describe the complete characteristics of CTR produced by electron beam on the back surface of the target. Realistic simulations indicate the diameter of CTR increases when the thickness of the target is increased. This is attributed to synergetic energy losses of high flux fast electrons due to Ohm heatings and colliding drags, which appear quite significant even when the thickness of the solid target only differs by micrometers. Especially, when the diagnosing position is fixed, we find that the intensity distribution of the CTR is also a function of time, with the diameter increased with time. As the diameter of CTR is related to the speed of electrons passing through the back surface of the target, our finding may be used as a new tool to diagnose the electron energy spectra near the surface of solid density plasmas.
更多
查看译文
关键词
fast electron transport,radiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要