Plasma-treated carbon nanotubes for fast infrared bolometers

APPLIED PHYSICS LETTERS(2023)

引用 2|浏览18
暂无评分
摘要
Carbon nanotube films are a promising class of materials for bolometric photodetectors due to a unique combination of extremely thin (nmsized) free-standing form factor with small thermal capacity and intriguing electronic and optical properties, thereby, ensuring high sensitivity and high speed of operation. Nevertheless, the key parameter for bolometric sensor material-the temperature coefficient of resistance (TCR)-is unacceptably low limiting the application of the carbon nanotube films. Here, we examine the plasma treatment of single-walled carbon nanotube (SWCNT) films as the effective method for the TCR enhancement. We study the effect of different plasma gases (oxygen, nitrogen, and hydrogen) on the conductivity of treated films. Also, we investigate the effect of defectiveness, length, and bundling degree of the SWCNTs on TCR. The optimized procedure allows to increase the TCR up to 1.7% K-1 by modulus at 100K and to 0.8% K-1 at 300 K. The bolometer prototypes based on the plasma-treated SWCNT films demonstrate high sensitivity over a wide IR range (similar to 21 V/W), a short response time (similar to 1 ms), and low noise equivalent power (similar to 8 x 10(-9)WHz(-1/2)) at the temperature of 100 K.
更多
查看译文
关键词
carbon nanotubes,bolometers,infrared,plasma-treated
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要