Modulated amorphous Fe-Ni-P nanosphere chains anchored on graphene aerogel grafted nickel foam: High-performance electrocatalyst for oxygen evolution reaction

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY(2023)

引用 2|浏览3
暂无评分
摘要
Substrate materials with large special surface area and high conductibility play a crucial role in preparing promising oxygen evolution reaction (OER) catalysts. Herein, binder-free Fe-Ni-P nanospheres anchored on graphene aerogel grafted nickel foam (FNP/GA@NF) are assembled with different molar ratios of Fe/Ni. GA@NF with prominent conductivity supplies ample accessible sites to amorphous Fe-Ni-P nanospheres to attach and offers a strong skeleton guaranteeing long-term stability during OER process. As revealed via spectroscopic measurement, tremella-like nanospheres arranged in a nanochain structure have been observed on the surface of GA@NF. Such a nanochain provides abundant paths for freely electronic transformation leading to faster kinetics. Besides, FNP/GA@NF pos-sesses distinguished electrocatalytic activities in 1.0 M KOH solution. Especially, when the molar ratio is 3:2, FNP/GA@NF catalyst requires overpotentials of only 320 and 413 mV to arrive current density of 50 and 100 mA cm-2. Furthermore, by the reason of robust framework, it shows superior durability even up to 24 h chronoamperometry test. This work opens an evolutive direction to construct binderless substrates to improve conduc-tivity and catalytic activity of non-noble catalysts for OER. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
nanosphere chains,graphene,amorphous fe–ni–p,high-performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要