Production of perlite-based-aerated geopolymer using hydrogen peroxide as eco-friendly material for energy-efficient buildings

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T(2023)

引用 14|浏览6
暂无评分
摘要
Using ground raw perlite through alkali activation to produce various construction materials such as plaster, grouting, and concrete can provide economic and environmental advan-tages by reducing Portland cement consumption. It is aimed to produce cementless pastes and cementless mortars based on the alkali activation of raw perlite and standard sand for this study. Perlite and alkali activators (NaOH and Na2SiO3) were used as binding materials to produce cementless paste and mortar. In addition, aerated lightweight pastes and mor-tars were produced using hydrogen peroxide (H2O2) as a blowing agent. Thus, the aeration mechanism of the sample was examined, and the changes in apparent density, compressive strength, and flexural strength values were determined. At the same time, the thermal conductivity properties of aerated paste and mortars were investigated. Geopolymers in various Water/Perlite and H2O2/Perlite ratios were produced, and their thermal conductivity, apparent density, compressive and flexural strength were contrasted. The experimental finding revealed that adding 0.25% H2O2 (by mass of perlite) to the mixtures enabled the production of lightweight pastes and mortars with lower density and lower thermal con-ductivity coefficient without a significant loss of ultimate strength. The developed perlite based aerated geopolymer is a eco-friendly and energy efficient solution to the buildings. Based on the results, H2O2/Perlite% above 0.5% and water/Perlite% above 45% should be avoided for both paste and mortars. In order to obtain optimum results in terms of work-ability, strength, density, and thermal conductivity, it is recommended that the H2O2/Perlite ratio for all samples should be 0.25% and the Water/Perlite percentage should be 40%. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
geopolymer,hydrogen peroxide,perlite-based-aerated,eco-friendly,energy-efficient
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要