Closed-loop control systems for pumps used in portable analytical systems.

Journal of chromatography. A(2023)

引用 1|浏览4
暂无评分
摘要
The demand for accurate control of the flowrate/pressure in chemical analytical systems has given rise to the adoption of mechatronic approaches in analytical instruments. A mechatronic device is a synergistic system which combines mechanical, electronic, computer and control components. In the development of portable analytical devices, considering the instrument as a mechatronic system can be useful to mitigate compromises made to decrease space, weight, or power consumption. Fluid handling is important for reliability, however, commonly utilized platforms such as syringe and peristaltic pumps are typically characterized by flow/pressure fluctuations and slow responses. Closed loop control systems have been used effectively to decrease the difference between desired and realized fluidic output. This review discusses the way control systems have been implemented for enhanced fluidic control, categorized by pump type. Advanced control strategies used to enhance the transient and the steady state responses are discussed, along with examples of their implementation in portable analytical systems. The review is concluded with the outlook that the challenge in adequately expressing the complexity and dynamics of the fluidic network as a mathematical model has yielded a trend towards the adoption of experimentally informed models and machine learning approaches.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要