Performance of the Large Field of View Airborne Infrared Scanner and its application potential in land surface temperature retrieval

FRONTIERS OF EARTH SCIENCE(2023)

引用 0|浏览11
暂无评分
摘要
The Large Field of View Airborne Infrared Scanner is a newly developed multi-spectral instrument that collects images from the near-infrared to long-wave infrared channels. Its data can be used for land surface temperature (LST) retrieval and environmental monitoring. Before data application, quality assessment is an essential procedure for a new instrument. In this paper, based on the data collected by the scanner near the Yellow River in Henan Province, the geometric and radiometric qualities of the images are first evaluated. The absolute geolocation accuracy of the ten bands of the scanner is approximately 5.1 m. The ground sampling distance is found to be varied with the whisk angles of the scanner and the spatial resolution of the images. The band-to-band registration accuracy between band one and the other nine bands is approximately 0.25 m. The length and angle deformations of the ten bands are approximately 0.67% and 0.3°, respectively. The signal-to-noise ratio (SNR) and relative radiometric calibration accuracy of bands 4, 9, and 10 are relatively better than those of the other bands. Secondly, the radiative transfer equation (RTE) method is used to retrieve the LST from the data of the scanner. Measurements of in situ samples are collected to evaluate the retrieved LST. Neglecting the samples with unreasonable retrieved LST, the bias and RMSE between in situ LST measured by CE312 radiometer and retrieved LST are −0.22 K and 0.94 K, and the bias and RMSE are 0.27 K and 1.59 K for the InfReC R500-D thermal imager, respectively. Overall, the images of the Large Field of View Airborne Infrared Scanner yield a relatively satisfactory accuracy for both LST retrieval and geometric and radiometric qualities.
更多
查看译文
关键词
Large Field of View Airborne Infrared Scanner,quality assessment,thermal infrared remote sensing,land surface temperature retrieval
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要