Fluorescent Magnetic Mesoporous Nanoprobes for Biotechnological Enhancement Procedures in Gene Therapy

MAGNETOCHEMISTRY(2023)

引用 0|浏览2
暂无评分
摘要
In recent years, nanotechnology has deployed a new set of theragnostic tools, including magnetic resonance contrast agents, nano-delivery systems and magnetic hyperthermia treatments in cancer therapy, exploiting not only the small size of nanoparticles, but also relevant nanoscale properties such as superparamagnetism. Specifically, magnetic nanostructures can be remotely manipulated by external magnetic fields, incrementing their possibilities not only for theragnosis, but also for biotech procedures. Genetic engineering processes involve a set of steps like extracting cells from complex environments, their selection and subsequent cultivation or modification by transfection and can benefit from the use of bioconjugated magnetic nanoparticles. Magnetofection of cells with genes or biological material uploaded on superparamagnetic nanoparticles attracted by a magnetic field greatly increases the efficiency, specificity and speed of the biotechnological procedure in gene transfer systems. This article presents a preliminary investigation into the enhanced transfection efficiency of fluorescent magnetic mesoporous silica nanostructures functionalized with mCherry plasmid, which were used to transfect HeLa cells in just 15 min via magnetic transfection. This method was compared to passive transfection (4 h) and conventional gene transfer using the commercial K2 Transfection System (16 h). The results demonstrated that the fluorescent magnetic mesoporous silica nanostructures were similarly effective to the commercial kit, without the need for reagents that increase costs in clinical therapy. Furthermore, viability assays conducted with HeLa cells showed negligible toxicity at concentrations of up to 50 mu g/mL.
更多
查看译文
关键词
superparamagnetic iron oxide nanoparticles,mesoporous silica nanoparticles,transfection,magnetofection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要