Fiber-Reinforced Lightweight Calcium Aluminate Cement-Based Concrete: Effect of Exposure to Elevated Temperatures

SUSTAINABILITY(2023)

引用 3|浏览10
暂无评分
摘要
Calcium aluminate cements (CACs) are a group of rapid-hardening hydraulic binders with a higher aluminum composition and lower ecological footprint compared to their ordinary Portland cement (CEM) counterparts. CACs are commonly known to have higher thermo-durability properties but have previously been observed to experience a major strength loss over time when exposed to thermal and humidity conditions due to the chemical conversion of their natural hydrated products. To address this, in this study, silica fume is added to induce a different hydration phase path suggested by previous studies and utilized in conjunction with fiber-reinforced lightweight pumice to produce lightweight concrete. To closely evaluate the performance of the produced samples with CAC compared to CEM, two different types of cement (CEM and CAC) with different proportions of pumice and crushed stone aggregate at temperatures between 200 and 1000 degrees C were tested. In this context, sieve analysis, bulk density, flowability, compressive and flexural strength, ultrasonic pulse velocity and weight loss of the different mixes were determined. The results of this study point to the better mechanical properties of CAC samples produced with pumice aggregates (compared to crushed stone) when samples are exposed to high temperatures. As a result, it is found that CACs perform better than CEM samples with lightweight pumice at elevated temperatures, showing the suitability of producing lightweight thermal-resistant CAC-based concretes.
更多
查看译文
关键词
calcium aluminate cement (CAC),lightweight concrete,pumice,thermal performance,silica fume
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要