ACSM1 and ACSM3 regulate prostate cancer fatty acid metabolism to promote tumour growth and constrain ferroptosis

biorxiv(2022)

引用 1|浏览14
暂无评分
摘要
Prostate tumours are highly reliant on lipids for energy, growth and survival. Activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes in prostate cancer, although the molecular underpinnings of this relationship remain to be fully elucidated. Here, we identified Acyl-CoA Synthetase Medium Chain Family Members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 are upregulated in prostate tumours compared to non-malignant tissues and other cancer types. Both enzymes enhanced proliferation and protected PCa cells from death in vitro , while silencing ACSM3 led to reduced tumour growth in an orthotopic xenograft model. We show that ACSM1 and ACSM3 are major regulators of the PCa lipidome and enhance energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation and cell death by ferroptosis. Conversely, over-expression of ACSM1/3 enabled PCa cells to survive toxic doses of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, these studies uncover a new link between AR and lipid metabolism and position ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要