A carbon dot-doped Cu-MOF-based smart nanoplatform for enhanced immune checkpoint blockade therapy and synergistic multimodal cancer therapy.

Journal of materials chemistry. B(2023)

引用 1|浏览2
暂无评分
摘要
Immune checkpoint blockade (ICB) is a kind of promising anti-tumor immunotherapy that can block the negative immune regulatory pathways using a particular antibody. Weak immunogenicity in most patients is a key obstacle to ICB therapy. Photodynamic therapy (PDT) is a non-invasive treatment that can enhance the immunogenicity of the host and realize systemic anti-tumor immunotherapy; yet tumor microenvironment hypoxia and glutathione overexpression severely restrict the PDT effect. To overcome the above issues, we design a combination therapy based on PDT and ICB. We prepared red carbon dot (RCD)-doped Cu-metal-organic framework nanoparticles (Cu-MOF@RCD) as smart nano-reactors because their tumor microenvironment and near-infrared light responsive property can decompose tumor endogenous HO through Fenton-like reactions. Cu-MOF@RCD also shows clear near-infrared photothermal therapy (PTT) effect and has an ability to deplete glutathione (DG), which together enhances decomposition of cellular HO and amplifies reactive oxygen species (ROS) levels in cells, thus leading to enhanced PDT and chemodynamic therapy (CDT) effect. Moreover, programmed cell death-ligand 1 antibody (anti-PD-L1) is used together to enable combination therapy, as Cu-MOF@RCD can significantly enhance host immunogenicity. In summary, the combination of Cu-MOF@RCD with anti-PD-L1 antibody exerts a synergistic PDT/PTT/CDT/DG/ICB therapy and can be used to eradicate the primary tumors and inhibit the growth of untreated distant tumors and tumor metastasis.
更多
查看译文
关键词
immune checkpoint blockade therapy,smart nanoplatform,cancer therapy,dot-doped,cu-mof-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要