Fe/S Redox-Coupled Mercury Transformation Mediated by Acidithiobacillus ferrooxidans ATCC 23270 under Aerobic and/or Anaerobic Conditions.

Microorganisms(2023)

引用 2|浏览9
暂无评分
摘要
Bioleaching processes or microbially mediated iron/sulfur redox processes in acid mine drainage (AMD) result in mineral dissolution and transformation, the release of mercury and other heavy metal ions, and changes in the occurrence forms and concentration of mercury. However, pertinent studies on these processes are scarce. Therefore, in this work, the Fe/S redox-coupled mercury transformation mediated by ATCC 23270 under aerobic and/or anaerobic conditions was studied by combining analyses of solution behavior (pH, redox potential, and Fe/S/Hg ion concentrations), the surface morphology and elemental composition of the solid substrate residue, the Fe/S/Hg speciation transformation, and bacterial transcriptomics. It was found that: (1) the presence of Hg significantly inhibited the apparent iron/sulfur redox process; (2) the addition of Hg caused a significant change in the composition of bacterial surface compounds and elements such as C, N, S, and Fe; (3) Hg mainly occurred in the form of Hg, HgS, and HgSO in the solid substrate residues; and (4) the expression of mercury-resistant genes was higher in earlier stages of growth than in the later stages of growth. The results indicate that the addition of Hg significantly affected the iron/sulfur redox process mediated by ATCC 23270 under aerobic, anaerobic, and coupled aerobic-anaerobic conditions, which further promoted Hg transformation. This work is of great significance for the treatment and remediation of mercury pollution in heavy metal-polluted areas.
更多
查看译文
关键词
Fe/S redox,acid mine drainage,acidophiles,mercury transformation,transcriptome analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要